

#### Air Cleaning Devices: Towards Design of Sustainable Buildings

Fariborz Haghighat, FASHRAE, FISIAQ Concordia Research Chair – Tier 1 Department of Building, Civil and Environmental Engineering Concordia University Montreal, Canada



Building, Civil and Environmental Engineering





#### •Other Research Team Members for the project

- –Dr. Chang-Seo Lee
- –Dr. Lexuan Zhong
- -Dr. Ali Khazarei
- -Ms. Donya Farhanyan
- -Mr. Alireza Aghighi

#### • Sponsors

- **–**Dectron Internationale
- -NSERC CRD program
- -Concordia University (Research Chair)



# Introduction

- Sustainability, IAQ
- Substantial market
- Manufacturer's claims on VOC removal
- Lack of standard methods for testing, etc.



# Limited information data and measurement techniques





![](_page_3_Picture_2.jpeg)

![](_page_4_Picture_0.jpeg)

#### Source: website

![](_page_4_Figure_2.jpeg)

![](_page_4_Picture_3.jpeg)

- Airborne Particles
- -Fibrous filters, electrostatic precipitators, etc. Microorganisms (Bioaerosols) -UV disinfection, HEPA filters, etc.
- •Gases
  - -Sorption filtration
  - -Ultraviolet photocatalytic oxidation (UV-PCO)
  - -Non-thermal plasma,
  - -Etc.

![](_page_5_Picture_8.jpeg)

![](_page_5_Picture_9.jpeg)

![](_page_6_Picture_0.jpeg)

# **Thermal Comfort**

**ASHRAE Standard 55** 

# **Ventilation Systems** in **Buildings**

# **Indoor Air Quality**

**ASHRAE Standard 62** 

![](_page_6_Picture_6.jpeg)

#### **ANSI/ASHRAE 55-1992** Supersedes ANSI/ASHRAE 55-1981

![](_page_7_Picture_2.jpeg)

#### AN AMERICAN NATIONAL STANDARD

#### Thermal Environmental **Conditions for Human Occupancy**

Approved by the ASHRAE Standards Committee July 1, 1992; by the ASHRAE Board of Directors July 2, 1992; and by the American National Standards Institute October 30, 1992.

ASHRAE standards are updated on a five-year cycle; the date following the standard number is the year of ASHRAE Board of Directors approval. The latest copies may be purchased from ASHRAE Publication Sales, 1791 Tullie Circle, NE, Atlanta, GA 30329.

©1992

ISSN 1041-2336

#### **AMERICAN SOCIETY OF HEATING, REFRIGERATING AND AIR-CONDITIONING ENGINEERS, INC.**

1791 Tullie Circle, NE · Atlanta, GA 30329

![](_page_7_Picture_11.jpeg)

![](_page_7_Picture_12.jpeg)

![](_page_7_Picture_13.jpeg)

# **Global Thermal Comfort**

- •Air Temperature
- •*Relative Humidity*
- •Air Velocity/Distribution
- •Activity Level
- Clothing Thermal Resistance

![](_page_8_Picture_6.jpeg)

Y

#### **ASHRAE Standard 62**

![](_page_9_Picture_1.jpeg)

ASHRAE 62-1999 (supersedes ANSI/ASHRAE 62-1989) Includes ASHRAE Addenda Listed in Appendix I

#### A\SSHIR/A\E STANDARD

#### Ventilation for Acceptable Indoor Air Quality

See Appendix I for approval dates by the ASHRAE Standards Committee and ASHRAE Board of Directors.

This standard is under continuous maintenance by a Standing Standard Project Committee (SSPC) for which the Standards Committee has established a documented program for regular publication of addenda or revisions, including procedures for timely, documented, consensus action on requests for change timely, documented, consensus action on requests for change to any part of the standard. The change submittal form, instruc-tions, and deadlines are given at the back of this standard and may be obtained in electronic form from ASHRAE's Internet Home Page, http://www.ashrae.org. The latest edition of an ASHRAE Standard may be purchased from ASHRAE Customer Service, 1791 Tullie Circle NE, Atlanta, GA 30329-2305. E-mail: orders@ashrae.org. Fax: 404-321-5478. Telephone: 404-635-8400 (worldwide) or toll free 1-800-527-4723 (for orders in the U.S. and Canada).

©1999 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. All rights reserved.

ISSN 1041-2336

**AMERICAN SOCIETY OF HEATING, REFRIGERATING AND AIR-CONDITIONING ENGINEERS, INC.** 1791 Tullie Circle, NE · Atlanta, GA 30329

![](_page_9_Picture_10.jpeg)

![](_page_9_Picture_11.jpeg)

Ventilation

#### • Von Pettenkofer (1858) suggested use of $CO_2$ as indicator of IAQ

-1000 PPM as a maximum level human effluents.  $-\Delta CO_2 = 500 PPM (10 l/s)$ 

#### -1000 PPM as a maximum level to overcome hindrance of odour from

![](_page_10_Picture_4.jpeg)

![](_page_10_Picture_5.jpeg)

Y

#### • Yaglou (1937) –CO<sub>2</sub> limitation -Occupants' adaptation

#### • Cain (1983)

- -Occupants' adaptation
- -No relation with ventilation rate

![](_page_11_Picture_5.jpeg)

| Ventilation rate  | % of odour ac | odour acceptance |  |  |
|-------------------|---------------|------------------|--|--|
| m <sup>3</sup> /h | Visitors      | Occupants        |  |  |
| 9                 | 68            | 96               |  |  |
| 18                | 75            | 96               |  |  |
| 27                | 79            | 92               |  |  |
| 36                | 81            | 95               |  |  |

![](_page_11_Picture_7.jpeg)

![](_page_11_Figure_8.jpeg)

![](_page_12_Figure_0.jpeg)

Y

## **Carbon Dioxide Generation Rate**

| Activity    | Liter/min | Ft <sup>3</sup> /min             |
|-------------|-----------|----------------------------------|
| Resting     | 0.20      | 0.0071                           |
| Sitting     | 0.25      | 0.0088<br>0.0106 Ft3/min/person. |
| Light work  | 0.38      | 0.0135                           |
| Manual work | 0.50      | 0.0177                           |
|             |           | Concordia                        |

According to ASHRAE standard 62, building occupants generate

TY

#### CFM 10600 $(C_i - C_0)_{ppm}$ Person

# ASHRAE Standard 62-1999 states that (C<sub>i</sub>- C<sub>0</sub>) should be higher than 700 ppm

#### Q = 15 CFM/person ~ 7.2 L/s/person

![](_page_14_Picture_4.jpeg)

![](_page_14_Picture_5.jpeg)

| Ventilation Rate | Basis                           |                               |
|------------------|---------------------------------|-------------------------------|
| (I/s)            | 1 lit/s                         | $= 2.11  \mathrm{CFM}$        |
| > 0.3            | 2% CO2, (respiration)           |                               |
| >0.5             | 1% CO2, (performance)           | NASA guideline                |
| > 1              | 0.5% CO2, (TLV)                 | US Navy guideline / OSHA Std. |
| >3.5             | 0.15% CO2, (body odor)          |                               |
| 2.5              | ASHRAE Standard 62-1981         |                               |
| 3.5              | Swedish Building Code 1980      |                               |
| 4                | Nordic Building Regulation Comm | nittee 1981                   |
| 5-7              | Berglund et al (body odor)      |                               |
| 8                | Fanger et al (body odor)        |                               |
| 7.5              | ASHRAE Standard 62-1989         | WHO guideline                 |
| 5-10             | Swedish Building Code 1988      |                               |
| 10-30            | Swedish Allergy Committee 1989  |                               |
| 16-20            | Weber et al (Tobacco Smoke)     |                               |
| 14-50            | Fanger et al (Total odor)       |                               |

![](_page_15_Picture_1.jpeg)

 How to evaluate and how to consider materials and equipment emission rate in order to determine the ventilation rate?

![](_page_16_Picture_1.jpeg)

![](_page_16_Picture_2.jpeg)

Y

![](_page_17_Picture_0.jpeg)

![](_page_17_Picture_1.jpeg)

![](_page_18_Picture_0.jpeg)

• WOOD STAINS: dimethyloctane, dimethyl-nonane, trimethlylbenzene ethylbenzene, dimethylbenzene propylbenzene, 1,1-oxybisbutane, toluene

# EXAMPLE

- nonane, decane, undecane,
- •*POLYURETHANE*: nonane, decane, undecane, butanone,
- •*LATEX PAINT*: 2-propanol, butanone, ethylbenzene,

![](_page_18_Picture_6.jpeg)

![](_page_19_Picture_0.jpeg)

•BENZENE - long term exposure could increase the risk of cancer; •XYLENES • TOLUENE anemia;

## VOC

- (Source: paints, stains) respiratory tract irritation
- (Source: varnish and solvents) is a narcotic and irritant that can affect the heart, liver, kidney and nervous system; (Source: chipboard) is a narcotic and may cause

![](_page_19_Picture_5.jpeg)

![](_page_20_Picture_0.jpeg)

- WOOD PRODUCTS
- FLOOR COVERINGS
- WALL COVERINGS
- CEILING MATERIALS
- INSULATION
- DUCT LINER
- FURNISHING
- PAINTS
- COATINGS
- ADHESIVES, CAULKS
- SEALANTS
- SOLVENTS, STAIN
- FLOOR WAX, TEXTILES

#### • OFFICE EQUIPMENTS, **COPIERS, PRINTERS**

![](_page_20_Picture_15.jpeg)

![](_page_20_Picture_16.jpeg)

![](_page_20_Picture_17.jpeg)

#### **Primary Sources**

![](_page_20_Picture_19.jpeg)

![](_page_20_Picture_20.jpeg)

![](_page_20_Picture_21.jpeg)

![](_page_20_Picture_22.jpeg)

![](_page_20_Picture_23.jpeg)

![](_page_21_Picture_0.jpeg)

![](_page_21_Picture_1.jpeg)

#### Primary Sources

![](_page_21_Picture_3.jpeg)

## **Source Characterization: Emission Rate**

#### **ASTM D 5116**

0.5m×0.4m×0.25m

![](_page_22_Picture_3.jpeg)

![](_page_22_Picture_4.jpeg)

![](_page_22_Picture_5.jpeg)

# **Emission Rate**

![](_page_23_Figure_1.jpeg)

![](_page_23_Picture_2.jpeg)

![](_page_24_Picture_0.jpeg)

![](_page_24_Picture_1.jpeg)

![](_page_25_Picture_1.jpeg)

![](_page_25_Picture_2.jpeg)

![](_page_26_Picture_0.jpeg)

![](_page_26_Picture_1.jpeg)

![](_page_26_Picture_2.jpeg)

![](_page_27_Picture_0.jpeg)

#### **1. Acceptability rating**

During this test you are exposed to air which contains compounds usually found in office environments.

How acceptable is the air quality?

Please mark on the scale.

#### **2. Rating of odor intensity**

How intense is the odor in the air? Choose a number assuming the odor intensity in the laboratory is 10.

The odor intensity is:

Y

![](_page_28_Picture_0.jpeg)

![](_page_28_Picture_1.jpeg)

![](_page_28_Picture_2.jpeg)

![](_page_28_Picture_3.jpeg)

![](_page_28_Picture_4.jpeg)

#### **Exposure-Response Relationship**

![](_page_29_Figure_1.jpeg)

![](_page_29_Picture_2.jpeg)

![](_page_29_Picture_3.jpeg)

| Acceptability as with the require                         | ssessme<br>ed diluti | ents for<br>on need<br>empty | individu<br>ed to rea<br>chambe | al and co<br>ach the a<br>ar | <b>mbined</b>  | materials<br>lity of an |
|-----------------------------------------------------------|----------------------|------------------------------|---------------------------------|------------------------------|----------------|-------------------------|
| Materials                                                 | Paint                | Carpet                       | PVC                             | PVC&<br>Carpet               | Paint &<br>PVC | Paint & Carpet          |
| Acceptability<br>without dilution                         | -1.07                | -3                           | -1.4                            | -2.27                        | -0.84          | -1.66                   |
| Required dil. to match<br>supply air acceptability<br>(2) | 10.7                 | 14.4                         | 10.6                            | 12.4                         | 16.7           | 21.7                    |

![](_page_30_Picture_2.jpeg)

# Conclusions

- The impact of increased ventilation on perceived air quality vary from one building material to another
- The relationship between acceptability and dilution factor is more flat for combined materials than for an individual material
- The ventilation rate needed to reach a certain acceptability level will be higher for combined materials than for an individual material
- Not sustainable

![](_page_31_Picture_5.jpeg)

Y

# **One Cause and Effect - Heat Island**

![](_page_32_Picture_1.jpeg)

1

#### Unsustainable

![](_page_33_Picture_1.jpeg)

#### Source: website

![](_page_33_Picture_3.jpeg)

#### How to improve the IAQ without increasing energy consumption?

![](_page_34_Picture_1.jpeg)

![](_page_34_Picture_2.jpeg)

## Air Cleaners

**Output** Solution Sol used gaseous air cleaning mechanism in non-industrial buildings.

> Different sorbent materials •Activated carbon, Zeolite, etc.

Different product structures

□ Packed bed, pleated media, etc.

![](_page_35_Picture_7.jpeg)

![](_page_35_Picture_8.jpeg)

![](_page_35_Picture_9.jpeg)

#### **Sorption Filtration**

#### Steps in Contaminant Adsorption

- From bulk gas to the external surface of solid phase
- Diffusion through pore of solid and migration from external surface to internal pore surface
- Adsorption from gas phase to solid phase

![](_page_36_Figure_5.jpeg)

Hunter, P., S., T., Oyama, Control of Volatile Organic Compound Emissions, John Wiley & Sons, Inc., 2000, 45.

![](_page_36_Picture_7.jpeg)

![](_page_37_Picture_0.jpeg)

![](_page_37_Picture_1.jpeg)

**Sorption Filtration** 

## Measurement Techniques/ Standards

![](_page_38_Picture_1.jpeg)

#### **Loose Granular Media**

#### **ASHRAE Standard 145.1**

![](_page_38_Picture_4.jpeg)

American Society of Heating, Refrigerating

and Air-Conditioning Engineers, In 1991 Section M. Annual M. Int

ASHRAE STANDARD

000

AMERIAN/AND Standard 145-3 (2017

#### **Air Cleaning Devices**

**ASHRAE Standard 145.2** 

![](_page_38_Picture_7.jpeg)

Y

![](_page_39_Picture_0.jpeg)

#### Laboratory Test Method for Assessing the Performance of Gas-Phase Air Cleaning Systems: Loose Granular Media

![](_page_39_Picture_2.jpeg)

![](_page_39_Figure_3.jpeg)

Source: ASHRAE Standard 145.1

![](_page_39_Figure_5.jpeg)

## **ASHRAE Standard 145.2**

# Laboratory Test Method for **Assessing the Performance of Gas-Phase Air Cleaning Systems: Air Cleaning Devices**

-Full-scale test duct from ASHRAE Standard 52.2

-Single compound at 100

![](_page_40_Picture_5.jpeg)

![](_page_40_Picture_7.jpeg)

# **Experimental Set-up**

![](_page_41_Picture_1.jpeg)

![](_page_41_Picture_2.jpeg)

![](_page_42_Picture_1.jpeg)

![](_page_42_Picture_2.jpeg)

![](_page_43_Picture_1.jpeg)

![](_page_43_Picture_2.jpeg)

![](_page_44_Picture_1.jpeg)

![](_page_44_Picture_2.jpeg)

![](_page_45_Picture_1.jpeg)

![](_page_45_Picture_2.jpeg)

![](_page_46_Picture_1.jpeg)

![](_page_46_Picture_2.jpeg)

![](_page_47_Picture_0.jpeg)

![](_page_47_Figure_1.jpeg)

![](_page_47_Picture_2.jpeg)

![](_page_47_Picture_3.jpeg)

![](_page_48_Figure_0.jpeg)

![](_page_48_Figure_1.jpeg)

![](_page_48_Figure_2.jpeg)

![](_page_48_Figure_4.jpeg)

![](_page_48_Picture_6.jpeg)

# •Flow resistances (sealed)

![](_page_49_Figure_1.jpeg)

# **V-shape Module**

![](_page_49_Picture_3.jpeg)

![](_page_49_Picture_4.jpeg)

# **Pleated Rigid Carbon Filters**

#### Flow resistances

![](_page_50_Figure_2.jpeg)

![](_page_50_Picture_3.jpeg)

![](_page_50_Picture_4.jpeg)

![](_page_50_Picture_5.jpeg)

![](_page_50_Picture_6.jpeg)

![](_page_51_Picture_0.jpeg)

![](_page_51_Figure_1.jpeg)

Concentration (ppb)

![](_page_51_Figure_3.jpeg)

#### VanOsdell 1996

![](_page_51_Picture_5.jpeg)

Y

![](_page_52_Picture_0.jpeg)

- •AC could be a solution, filters,
- Needs to develop a procedure to predict the filter performance at low concentrations using existing standards
- Needs routine maintenance and cost (pressure drop and regeneration)

#### ASHRAE standards tests can be used to compare different

![](_page_52_Picture_5.jpeg)

![](_page_52_Picture_6.jpeg)

![](_page_52_Picture_7.jpeg)

![](_page_53_Picture_0.jpeg)

#### **1)Carbon filtration**

![](_page_53_Picture_2.jpeg)

#### Advantages

high capacity high efficiency

#### 2)PCO technology

![](_page_53_Figure_6.jpeg)

# **Other Possible Techniques**

Disadvantages

high pressure-drop high energy usage

Harmless water and

low pressure-drop low energy usage no post-treatment long life service Operation at room T and pressure

![](_page_53_Picture_12.jpeg)

# **UV-PCO** Reactions

#### Chemical bond energies: 100 – 1000 kJ/mol

| Bond  | E (kJ/m             | ol) 7                 |
|-------|---------------------|-----------------------|
| O-H   | 465                 | 25                    |
| C-H   | 415                 | 28                    |
| N-H   | 390                 | 30                    |
| C-O   | 360                 | 33                    |
| C-C   | 348                 | 34                    |
| C-CI  | 339                 | 35                    |
| Br-Br | 193                 | 62                    |
| 0-0   | 146                 | 82                    |
|       | 604 kJ/mc           | ol-1 302<br>TRAVIOLET |
|       |                     |                       |
|       | 200 nm              | 400                   |
| 11    | $V_{-}$ and $V_{-}$ | S region is even      |

- $\lambda$  (nm)
- 8
- 2
- 4
- 3
- 0
- 0
- **VISIBLE** 
  - 0 nm
    - 800 nm

151

**INFRARED** 

UV – and VIS region is expected to induce chemical reactions.

![](_page_54_Picture_19.jpeg)

# UV-PCO

![](_page_55_Picture_1.jpeg)

![](_page_55_Figure_2.jpeg)

![](_page_55_Figure_3.jpeg)

![](_page_55_Picture_4.jpeg)

# **UV-Lamps and Catalyst substrates**

#### **Catalyst:**

Catalyst A

Catalyst substrate A consists of TiO<sub>2</sub> coated on fiber glass and 105.7063 ± 1.6269 m<sup>2</sup>/g BET surface area.

Catalyst substrate B consists of TiO<sub>2</sub> coated on activated carbon with 887.6638  $\pm$  10.6871 m<sup>2</sup>/g BET surface area.

# Catalyst B

**UV-Lamps:** 

**VUV** lamps with 254nm+185nm wavelength irradiation; **UVC** lamps with 254nm wavelength irradiation

![](_page_56_Picture_7.jpeg)

![](_page_56_Picture_8.jpeg)

![](_page_56_Picture_9.jpeg)

![](_page_56_Picture_10.jpeg)

### Effect of UV-Lamps

- A In order to present and discuss the exgiven:
  - 1. Single pass removal efficiency, Et (%):
  - 2. By-products yield, Ga (by-product) (ppb):

![](_page_57_Figure_4.jpeg)

Removal efficiency versus the initial concentration of target compounds in the presence of VUV and UVC lamps.

In order to present and discuss the experimental results the following two definitions were

![](_page_57_Figure_7.jpeg)

(ppb):  $G_{a(by-product)}=C_{up(by-product)}-C_{down(by-product)}$ 

![](_page_57_Picture_9.jpeg)

Y

![](_page_58_Figure_1.jpeg)

By-products yield versus the initial concentration of target compounds in the presence of VUV and UVC lamps.

![](_page_58_Figure_3.jpeg)

![](_page_58_Picture_4.jpeg)

| 00    | 1000 | 250   | 500    | 1000  |
|-------|------|-------|--------|-------|
| pb    | ppb  | ppb   | ppb    | ppb   |
| exane |      | F     | -Xylen | e     |
| .00   | 0.00 | 0.00  | 0.00   | 0.00  |
| 0     | 0    | 13.03 | 12.67  | 13.12 |

![](_page_58_Picture_6.jpeg)

## Effect of Catalyst Substrate

![](_page_59_Figure_1.jpeg)

Removal efficiency versus the initial concentration of target compounds in the presence of VUV over  $TiO_2/AC$  and  $TiO_2/FG$ 

![](_page_59_Picture_3.jpeg)

Y

![](_page_60_Picture_0.jpeg)

![](_page_60_Figure_1.jpeg)

By-products yield versus the initial concentration of target compounds in the presence of VUV over  $TiO_2/$ AC and TiO<sub>2</sub>/FG

![](_page_60_Figure_3.jpeg)

## Effect of Catalyst Substrate

![](_page_60_Picture_5.jpeg)

# **Preliminary Conclusion**

- Experimental results demonstrated that VUV lamps outperformed UVC lamps for of VUV lamps for both p-xylene and n-hexane.
- were formed over this catalyst substrate.

degradation of model compounds. However, higher amount of by-products were formed in the case of VUV lamps, and crotonaldehyde was only generated in the presence

• The yield of by-products in UV-PCO of n-hexane was greater than p-xylene in the presence of both VUV and UVC lamps. This demonstrates that more partial oxidation and side reactions happen in n-hexane oxidation compared to the p-xylene.

 Comparison of the performance of catalyst substrates, TiO2 /FG and TiO2 /AC, showed that TiO2 /AC has better properties for degradation of target compounds. This is the case especially for UV-PCO of p-xylene where even lower amount of by-products

![](_page_61_Picture_7.jpeg)

# **Summary and Conclusion**

- Sorption filtration is still the most effective off-the-shelf commercial technology,
- UV-PCO is a promising technology if designed properly, However, products tested did not show significant removal effectiveness and generated by-products;
- - -Develop the appropriate substrate,
  - -Develop a methodology to optimize the design
- Further work is needed to develop rating system for product evaluation.

![](_page_62_Picture_8.jpeg)