

Hugues NÉLISSE, IRSST / Franck SGARD, IRSST Olivier Doutres, ÉTS Frédéric Laville, ÉTS Jérôme Boutin, IRSST Cécile Le Cocq, ÉTS Jérémie Voix, ÉTS

Développement d'outils et de méthodes pour mieux évaluer et améliorer la protection auditive individuelle des travailleurs

Plan

- Contexte et objectifs
- Volet mesures : atténuation et effet d'occlusion
- Volet modélisation des protecteurs
- Retombées et perspectives

Atténuation des protecteurs

Laboratoire

Milieu de travail

Mesures atténuation – 2 méthodes populaires

Mesures atténuation – 2 méthodes populaires

Effet d'occlusion

propre voix

Oreille occluse : amplification et perception modifiées de notre

Berger (2016), *The noise manual*, 6th Edition

Effet d'occlusion

 Oreille occluse : amplification propre voix

• Oreille occluse : amplification et perception modifiées de notre

Mesure de l'effet d'occlusion

- Méthode avec ossivibrateur
 - Avec et sans protecteur
 - Seuils ou microphones

- Méthode avec effort vocal
 - Avec et sans protecteur

Objectifs

Volet expérimental

- Atténuation : liens entre REAT et MIRE terrain

Volet modélisation - Modèles numériques pour une meilleure conception et pour guider les méthodes de mesure

- Occlusion : méthode robuste plus représentative du

Essais en laboratoire (1)

4 conditions

Atténuation

3 étapes par condition **1** REAT - seuils 2 MIRE - bruit blanc @ 90 dB **3** Effort vocal - Occlusion

double protection

Essais en laboratoire (2)

Champ diffus ICAR (per ANSI S12.6)

Microphones

Essais en laboratoire (3)

- 29 sujets (audition normale)
- 57 séquences de tests
- 3 serre-têtes et 3 bouchons

		Bouchons			# sessions /
		Classic	Push-ins	Sur mesure	coquilles
Coquilles	NRR	29	28	23	
Optime 105	30	6	6	6	18
Optime 98	25	7	6	6	19
Ear 1000	20	6	6	6	18
# sessions / bouchons		19	18	18	55

Classic	Push-Ins	Sur mesure
Optime 105 – H10	Optime 98 – H9	EAR 1000

REAT vs MIRE : données spectrales

MIRE : Transformation binaurale (Voix et Laville, 2009) + Correction pour conduction osseuse (ANSI S12.42)

REAT vs MIRE : données spectrales

MIRE : + Correction pour conduction osseuse (ANSI S12.42)

REAT vs MIRE : données spectrales

MIRE :

REAT vs MIRE : indice global PAR

Effet d'occlusion : un exemple

Volet modélisation

Stratégies de modélisation

Excitation acoustique Perte par insertion (IL)

- Interaction coquille/tête/ 1. torse/champ acoustique externe
- Coquille + chair 2.
- 3. Canal auditif
- Couplages 4.

- Interaction bouchon/tête/torse/ champ acoustique externe
- Bouchon 2.
- 3. lois de comportement des biomatériaux, CL)
- Couplages 4.

Excitation par voie osseuse Effet d'occlusion (OE)

Canal auditif + tissus (géométrie,

- Bouchon
- 2. Canal auditif + tissus (géométrie, lois de comportement des biomatériaux, CL, excitation)
- Couplages 3.

Modélisation interaction oreille ouverte / champ acoustique externe; protecteur auditif/champ acoustique externe

Première simplification

Configurations simplifiées (tête/ torse négligés) insérées dans un baffle

Géométrie complexe de la tête/torse basée sur le CAD de l'ATF

 Diminution de la lourdeur des modèles numériques

• Suffisant pour comprendre la physique • Plus facile à valider expérimentalement Dispositif expérimental simplifié à concevoir pour évaluer l'effet d'occlusion

Modélisation interaction oreille ouverte / champ acoustique externe; protecteur auditif/champ acoustique externe

Cas d'une excitation acoustique sur l'ATF (oreille occluse par une coquille)

Problème couplé fluide / structure résolu à partir d'une méthode par éléments finis (LMS Virtual Lab 13.1 © Siemens)

Modélisation interaction oreille ouverte / champ acoustique externe; protecteur auditif/champ acoustique externe

Cas d'une excitation acoustique ou par voie osseuse dans une configuration simplifiée (oreille occluse)

 Méthodologie basée sur la méthode des éléments finis – Utilisation de deux logiciels commerciaux (LMS Virtual Lab 13.1 © Siemens ou COMSOL Multiphysics © COMSOL) selon la configuration étudiée

Modélisation du canal auditif et des tissus biologiques environnants

Excitation acoustique

2D axisymétrique – pas de tissus autour du canal

Forme 3D complexe – pas de tissus autour du canal

2D axisymétrique – peau autour du canal

Excitation par voie osseuse

Forme 3D complexe – modèle 3D complet pour l'os temporal – autres tissus autour du canal avec frontière externe cylindrique

2D axisymétrique – tissus autour du canal

Forme 3D complexe – tissus autour du canal avec frontière externe cylindrique

Modélisation des bouchons

silicone) ou tirées de la littérature (bouchon mousse)

Canal auditif ne se déforme pas

bouchon étudiées

Correction la comportement des matériaux (caractérisé en laboratoire (bouchon

- Plusieurs conditions de couplage entre les parois du conduit auditif et le
- Analyses de sensibilité du modèle à la géométrie et propriétés des matériaux pour identifier les paramètres importants qui doivent être connus avec précision

Modélisation des coquilles

Modèles numériques de deux coquilles commerciales

et la tête (coussin)

pour identifier les propriétés physiques mécaniques du coussin

- Performance acoustique des coquilles dépend fortement du joint entre la coquille
- Plusieurs modèles de coussin étudiés (ressort, solide viscoélastique équivalent)
- Procédures de caractérisation hybrides experimentalo-numériques développées

IL d'un bouchon en silicone – comparaisons avec des mesures sur tête artificielle

IL d'un bouchon en silicone – comparaisons avec des mesures sur tête artificielle

IL de bouchons – comparaison avec des mesures sur sujets humains

IL de bouchons – comparaison avec des mesures sur sujets humains

Bouchon silicone E=1.2MPa η =0.12 ρ =1150kg/m3 ν =0.48

IL de bouchons – comparaison avec des mesures sur sujets humains

Bouchon mousse E=0,1MPaη=0.5 ρ =220kg/m3 v = 0.1

16.8mm

)fixed

200

Eardrum

Effet d'occlusion de bouchons – comparaisons avec des mesures sur sujets humains

$$OE = Lp_{occ}$$

$$Lp_{open}$$
 $\left[dB \right]$

Effet d'occlusion de bouchons – comparaisons avec des mesures sur sujets humains

Profondeur insertion 15mm

Données expérimentales Stenfelt and Reinfeldt (2007)

Effet d'occlusion de bouchons – comparaisons avec des mesures sur sujets humains

Effet d'occlusion de bouchons – comparaisons avec des mesures sur sujets humains

Excitation Bone Cartilage 20.4mm 20mm Contest of the 0.5mm 0.1mm Eardrum 4.2mm Earplug Ear canal Symmetr axis entrance 27.01 25mm

> Bouchon mousse 11.1mm

Effet d'occlusion de bouchons – comparaisons avec des mesures sur sujets humains

50 Excitation 40 Cartilage Bone 20.4mm 20mm 0.5mm 30 (gp) Eardrum 4.2mm Earplug Ear canal Symmetry Ear cana axis entrance 25mm 2mm

Bouchon en silicone 11.7mm

Limites de l'étude

Volet expérimental

- Protecteurs passifs
- Champ diffus
- Pas de mesure au tympan
- Pas de mesure au seuil pour l'effet d'occlusion

Volet modélisation

- Nombre restreint de protecteurs passifs étudiés
- Bruits stationnaires
- d'occlusion à améliorer
- Validation des modèles numériques dans des cas simplifiés
- Confort global du protecteur non étudié

Réalisme des modèles numériques pour prédire l'atténuation et l'effet

Conclusions

Volet expérimental

- ➤ Méthode MIRE
 - Comparable à REAT, même individuellement
 - Bien adapté pour mesures terrain
 - > Liens avec REAT mis en évidence

\succ Effet d'occlusion

 \succ Développement d'un test facile à mettre en œuvre

Volet modélisation

- Modèles numériques pour coquilles et bouchons
 - Prédiction de l'atténuation et de l'effet d'occlusion
 - > Inclusion de la peau, cartilage et os
 - Inclusion de la diffraction par la tête
 - > Chemins aériens et solidiens

Retombées

- 9 articles dans des journaux scientifiques (+ deux en préparation)
- 19 conférences (avec ou sans *proceedings*)
- 1 rapport IRSST
- Formation de 4 Ph. D. à l'ÉTS (S. Boyer, G. Viallet, M. Brummund, M.-A. Gaudreau)
- Implication d'un nouveau professeur (Olivier Doutres, ÉTS) Intérêt de manufacturiers pour la conception de protecteurs • Retombées terrain dans les projets qui suivent

Suites

- \bullet
- Confort des bouchons (Projet de recherche 2015-0014)
- Nouvelles collaborations (INRS, Marseille, ÉTS, Sheffield) \bullet
- Aides auditives (Projet à venir : IRSST, ÉTS, U. Ottawa, U. de Montréal)

Dosimétrie intra-auriculaire (Projet de recherche 2013-0017 en cours) Développement d'une oreille artificielle (Post-Doctorat, activité 2016-0020)

